Informace o publikaci

On critical double phase Kirchhoff problems with singular nonlinearity

Logo poskytovatele
Autoři

ARORA Rakesh FISCELLA Alessio FISCELLA Alessio MUKHERJEE Tuhina MUKHERJEE Tuhina WINKERT Patrick WINKERT Patrick

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Rendiconti del Circolo Matematico di Palermo Series 2
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s12215-022-00762-7
Doi http://dx.doi.org/10.1007/s12215-022-00762-7
Klíčová slova Critical growth; Double phase operator; Fibering method; Nehari manifold; Nonlocal Kirchhof term; Singular problem
Popis The paper deals with the following double phase problem -m[integral(Omega) (vertical bar del u vertical bar(p)/p+a(x)vertical bar del u vertical bar(p)/q)dx]div(vertical bar del u vertical bar(p-2)del u+a(x)vertical bar del u vertical bar(q-2)del u) = lambda u(-gamma) + u(p*-1) in Omega, u > 0 in Omega, u = 0 on partial derivative Omega, where Omega subset of R-N is a bounded domain with Lipschitz boundary partial derivative Omega, N >= 2, m represents a Kirchhoff coefficient, 1 < p < q < p* with p* = Np/(N - p) being the critical Sobolev exponent to p, a bounded weight a(center dot) >= 0, lambda > 0 and gamma is an element of(0, 1). By the Nehari manifold approach, we establish the existence of at least one weak solution.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info