Informace o publikaci

MATLAB Operators of Left/Right Division and Generalized Inverse

Logo poskytovatele
Autoři

VESELÝ Vítězslav

Rok publikování 1994
Druh Článek ve sborníku
Konference Proceedings of the summer school MATLAB 93, Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis, Mathematica 4
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Obecná matematika
Klíčová slova Least-squares solution of systems of linear equations; fast algorithm; generalized inverse; Moore-Penrose pseudoinverse
Popis For a non-square matrix $A$ the MATLAB operators of left ($\backslash$) or right (/) division yield a least-squares solution of matrix equations $AX=B$ or $XA=C$, respectively. The procedure for obtaining this solution is analyzed in detail and related to that obtained via the generalized inverse. The matrix $A^-=A\backslash I$, where $I$ is identity matrix, is shown to be a generalized 1-inverse (the first Moore-Penrose axiom $AA^-A=A$ holds) yielding with $A^-B$ the same least-squares solution as $A\backslash B$. A new effective algorithm based on that $A^-$ is developed for the computation of the Moore-Penrose pseudoinverse $A^+$ and listed as M-file 'rpinv' in appendix. The attached timing tests performed with large-scale matrices exhibit for 'rpinv' equal precision and times shorter by about 40% compared to MATLAB command 'pinv'.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info