Informace o publikaci

Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding

Autoři

TIMILSINA Mohan NOVÁČEK Vít DAQUIN Mathieu YANG Haixuan

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj NEURAL NETWORKS
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www original online article
Doi http://dx.doi.org/10.1016/j.neunet.2022.10.005
Klíčová slova diffusion; multi-layer embedding; neural network
Popis The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info