Informace o publikaci

SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval

Logo poskytovatele
Autoři

SEDMIDUBSKÝ Jan CARRARA Fabio AMATO Giuseppe

Rok publikování 2023
Druh Článek ve sborníku
Konference 45th European Conference on Information Retrieval (ECIR)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-031-28238-6_8
Klíčová slova 3D skeleton sequence;segment similarity;unsupervised feature learning;Variational AutoEncoder;segment code list;action retrieval
Popis Recent progress in pose-estimation methods enables the extraction of sufficiently-precise 3D human skeleton data from ordinary videos, which offers great opportunities for a wide range of applications. However, such spatio-temporal data are typically extracted in the form of a continuous skeleton sequence without any information about semantic segmentation or annotation. To make the extracted data reusable for further processing, there is a need to access them based on their content. In this paper, we introduce a universal retrieval approach that compares any two skeleton sequences based on temporal order and similarities of their underlying segments. The similarity of segments is determined by their content-preserving low-dimensional code representation that is learned using the Variational AutoEncoder principle in an unsupervised way. The quality of the proposed representation is validated in retrieval and classification scenarios; our proposal outperforms the state-of-the-art approaches in effectiveness and reaches speed-ups up to 64x on common skeleton sequence datasets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info