Informace o publikaci

Constructions of Kleene lattices

Autoři

CHAJDA Ivan LAENGER Helmut PASEKA Jan

Rok publikování 2022
Druh Článek ve sborníku
Konference 2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022)
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.ieeecomputersociety.org/10.1109/ISMVL52857.2022.00020
Doi http://dx.doi.org/10.1109/ISMVL52857.2022.00020
Klíčová slova Full twist-product; Kleene lattice; representation
Popis We present an easy construction producing a Kleene lattice K = (K, (sic), (sic), ') from an arbitrary distributive lattice L = (L, V, Lambda) and a non-empty subset of L. We show that L can be embedded into K and compute vertical bar K vertical bar under certain additional assumptions. We prove that every finite chain considered as a Kleene lattice can be represented in this way and that this construction preserves direct products. Moreover, we demonstrate that certain Kleene lattices that are ordinal sums of distributive lattices are representable. Finally, we prove that not every Kleene lattice is representable.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info