Informace o publikaci

Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

Logo poskytovatele
Autoři

ELYSEEVA Julia

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematische Nachrichten
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1002/mana.202000434
Doi http://dx.doi.org/10.1002/mana.202000434
Klíčová slova comparative index; finite eigenvalues; linear hamiltonian systems; relative and renormalized oscillation theory; spectral and oscillation theory
Popis In this paper, we consider two linear Hamiltonian differential systems that depend in general nonlinearly on the spectral parameter lambda and with Dirichlet boundary conditions. For the Hamiltonian problems, we do not assume any controllability and strict normality assumptions and also omit the classical Legendre condition for their Hamiltonians. The main result of the paper, the relative oscillation theorem, relates the difference of the numbers of finite eigenvalues of the two problems in the intervals (-infinity,beta]$(-\infty , \beta ]$ and (-infinity,alpha]$(-\infty , \alpha ]$, respectively, with the so-called oscillation numbers associated with the Wronskian of the principal solutions of the systems evaluated for lambda=alpha$\lambda =\alpha$ and lambda=beta$\lambda =\beta$. As a corollary to the main result, we prove the renormalized oscillation theorems presenting the number of finite eigenvalues of one single problem in (alpha,beta]$(\alpha ,\beta ]$. The consideration is based on the comparative index theory applied to the continuous case.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info