Informace o publikaci

Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces

Autoři

DING Chao NGUYEN Phuoc Tai JOHN Ryan

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Proceedings of the Edinburgh Mathematical Society
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1017/S0013091522000426
Doi http://dx.doi.org/10.1017/S0013091522000426
Klíčová slova Bosonic Laplacians; real analyticity; L-2 decomposition; bosonic Hardy spaces; bosonic Bergman spaces
Popis A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info