Informace o publikaci

Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language

Logo poskytovatele
Autoři

MESSINA Nicola SEDMIDUBSKÝ Jan FABRIZIO Falchi REBOK Tomáš

Rok publikování 2023
Druh Článek ve sborníku
Konference 46th International Conference on Research and Development in Information Retrieval (SIGIR)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1145/3539618.3592069
Doi http://dx.doi.org/10.1145/3539618.3592069
Klíčová slova human motion data;skeleton sequences;CLIP;BERT;deep language models;ViViT;motion retrieval;cross-modal retrieval
Popis Due to recent advances in pose-estimation methods, human motion can be extracted from a common video in the form of 3D skeleton sequences. Despite wonderful application opportunities, effective and efficient content-based access to large volumes of such spatio-temporal skeleton data still remains a challenging problem. In this paper, we propose a novel content-based text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural-language textual description. To define baselines for this uncharted task, we employ the BERT and CLIP language representations to encode the text modality and successful spatio-temporal models to encode the motion modality. We additionally introduce our transformer-based approach, called Motion Transformer (MoT), which employs divided space-time attention to effectively aggregate the different skeleton joints in space and time. Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions. Finally, we set up a common evaluation protocol by defining qualitative metrics for assessing the quality of the retrieved motions, targeting the two recently-introduced KIT Motion-Language and HumanML3D datasets. The code for reproducing our results is available here: https://github.com/mesnico/text-to-motion-retrieval.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info