Informace o publikaci

Decomposable (4,7) solutions in eleven-dimensional supergravity

Autoři

ALEKSEEVSKY Dmitri CHRYSIKOS Ioannis TAGHAVI-CHABERT Arman

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Classical and Quantum Gravity
Citace
www https://iopscience.iop.org/article/10.1088/1361-6382/ab0615
Doi http://dx.doi.org/10.1088/1361-6382/ab0615
Klíčová slova supergravity; M-theory; supergravity backgrounds; homogeneous supergravity backgrounds; special geometric structures; G(2)-structures; Einstein metrics
Popis We describe a class of decomposable eleven-dimensional supergravity backgrounds (M-10,M-1 = (M) over tilde (3,1) x M-7, gM = (g) over tilde + g) which arc products of a four-dimensional Lorentzian manifold and a seven-dimensional Riemannian manifold, endowed with a flux form given in terms of the volume form on (M) over tilde (3,1) and a closed 4-form F-4 on M-7. We show that the Maxwell equation for such a flux form can be read in terms of the co-closed 3-form phi = *F-7(4). Moreover, the supergravity equation reduces to the condition that ((M) over tilde (3,1),(g) over tilde) is an Einstein manifold with negative Einstein constant and (M-7,g,F) is a Riemannian manifold which satisfies the Einstein equation with a stress-energy tensor associated to the 3-form phi. Whenever this 3-form is generic, we show that the Maxwell equation induces a weak G2-structure on M-7 and obtain decomposable supergravity backgrounds given by the product of a weak G(2) -manifold (M-7,phi,g) with a Lorentzian Einstein manifold ((M) over tilde (3,1),(g) over tilde). We also construct examples of compact homogeneous Riemannian 7-manifolds endowed with non-generic invariant 3-forms which satisfy the Maxwell equation, but the construction of decomposable homogeneous supergravity backgrounds of this type remains an open problem.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info