Informace o publikaci

SPIN STRUCTURES ON COMPACT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS

Autoři

ALEKSEEVSKY D. V. CHRYSIKOS Ioannis

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Transformation Groups
Citace
www https://doi.org/10.1007/s00031-018-9498-1
Doi http://dx.doi.org/10.1007/s00031-018-9498-1
Popis We study spin structures on compact simply-connected homogeneous pseudo-Riemannian manifolds (M = G=H; g) of a compact semisimple Lie group G. We classify flag manifolds F = G/H of a compact simple Lie group which are spin. This yields also the classification of all flag manifolds carrying an invariant metaplectic structure. Then we investigate spin structures on principal torus bundles over ag manifolds F = G/H, i.e., C-spaces, or equivalently simply-connected homogeneous complex manifolds M = G/L of a compact semisimple Lie group G. We study the topology of M and we provide a sufficient and necessary condition for the existence of an (invariant) spin structure, in terms of the Koszul form of F. We also classify all C-spaces which are fibered over an exceptional spin ag manifold and hence are spin.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info