Informace o publikaci

Predictability and Comprehensibility in Post-Hoc XAI Methods: A User-Centered Analysis

Autoři

JALALI Anahid HASLHOFER Bernhard KRIGLSTEIN Simone RAUBER Andreas

Rok publikování 2023
Druh Článek ve sborníku
Konference Intelligent Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-031-37717-4_46
Doi http://dx.doi.org/10.1007/978-3-031-37717-4_46
Klíčová slova eXplainable Artificial Intelligence, Machine Learning Interpretability,Human Computer Interaction
Popis Post-hoc explainability methods aim to clarify predictions of black-box machine learning models. However, it is still largely unclear how well users comprehend the provided explanations and whether these increase the users’ ability to predict the model behavior. We approach this question by conducting a user study to evaluate comprehensibility and predictability in two widely used tools: LIME and SHAP. Moreover, we investigate the effect of counterfactual explanations and misclassifications on users’ ability to understand and predict the model behavior. We find that the comprehensibility of SHAP is significantly reduced when explanations are provided for samples near a model’s decision boundary. Furthermore, we find that counterfactual explanations and misclassifications can significantly increase the users’ understanding of how a machine learning model is making decisions. Based on our findings, we also derive design recommendations for future post-hoc explainability methods with increased comprehensibility and predictability.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info