Informace o publikaci

LOCALLY COUNTABLE PSEUDOVARIETIES

Logo poskytovatele
Autoři

ALMEIDA J. KLÍMA Ondřej

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Publicacions Matemátiques
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://projecteuclid.org/journals/publicacions-matematiques/volume-67/issue-1/LOCALLY-COUNTABLE-PSEUDOVARIETIES/10.5565/PUBLMAT6712303.full
Doi http://dx.doi.org/10.5565/PUBLMAT6712303
Klíčová slova profinite algebra; pseudovariety; locally countable; Mal?cev product; factorization forest; Prouhet-Thue-Morse substitution
Popis The purpose of this paper is to contribute to the theory of profinite semigroups by considering the special class consisting of those all of whose finitely generated closed subsemigroups are countable, which are said to be locally countable. We also call locally countable a pseudovariety V (of finite semigroups) for which all pro -V semigroups are locally countable. We investigate operations preserving local countability of pseudovarieties and show that, in contrast with local finiteness, sev-eral natural operations do not preserve it. We also investigate the relationship of a finitely generated profinite semigroup being countable with every element being ex-pressible in terms of the generators using multiplication and the idempotent (omega) power. The two properties turn out to be equivalent if there are only countably many group elements, gathered in finitely many regular J-classes. We also show that the pseudovariety generated by all finite ordered monoids satisfying the inequality 1 5 xn is locally countable if and only if n = 1.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info