Zde se nacházíte:
Informace o publikaci
Nonlinearizable CR Automorphisms for Polynomial Models in C^N
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Geometric Analysis |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1007/s12220-022-01144-2 |
Doi | http://dx.doi.org/10.1007/s12220-022-01144-2 |
Klíčová slova | Catlin multitype; Polynomial models; Holomorphic vector fields; Infinitesimal CR automorphisms |
Popis | The Lie algebra of infinitesimal CR automorphisms is a fundamental local invariant of a CR manifold. Motivated by the Poincaré local equivalence problem, we analyze its positively graded components, containing nonlinearizable holomorphic vector fields. The results provide a complete description of invariant weighted homogeneous polynomial models in C^N, which admit symmetries of degree higher than two. For homogeneous polynomial models, symmetries with quadratic coefficients are also classified completely. As a consequence, this provides an optimal 1-jet determination result in the general case. Further we prove that such automorphisms arise from one common source, by pulling back via a holomorphic mapping a suitable symmetry of a hyperquadric in some (typically high dimensional) complex space. |
Související projekty: |