Informace o publikaci

Finitary Prelinear and Linear Orthosets

Autoři

EMIR Kadir PASEKA Jan VETTERLEIN Thomas

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Theoretical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s10773-023-05356-2
Doi http://dx.doi.org/10.1007/s10773-023-05356-2
Klíčová slova Orthoset; Prelinear orthoset; Linear orthoset; Finite rank; Orthomodular lattice; Modular lattice; Covering property
Popis An orthoset is a set equipped with a symmetric and irreflexive binary relation. A linear orthoset is an orthoset such that for any two distinct elements e, f there is a third element g such that exactly one of f and g is orthogonal to e and the pairs e, f and e, g have the same orthogonal complement. Linear orthosets naturally arise from anisotropic Hermitian spaces. We moreover define an orthoset to be prelinear by assuming the above-mentioned property for non-orthogonal pairs e, f only. In this paper, we establish some structural properties of prelinear and linear orthosets under the assumption of finiteness or finite rank.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info