Informace o publikaci

Does Size Matter? - Comparing Evaluation Dataset Size for the Bilingual Lexicon Induction

Autoři

DENISOVÁ Michaela RYCHLÝ Pavel

Rok publikování 2023
Druh Článek ve sborníku
Konference Proceedings of the Seventeenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2023
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Klíčová slova Cross-lingual word embeddings; Bilingual lexicon induction; Evaluation dataset’s size
Popis Cross-lingual word embeddings have been a popular approach for inducing bilingual lexicons. However, the evaluation of this task varies from paper to paper, and gold standard dictionaries used for the evaluation are frequently criticised for occurring mistakes. Although there have been efforts to unify the evaluation and gold standard dictionaries, we propose a new property that should be considered when compiling an evaluation dataset: size. In this paper, we evaluate three baseline models on three diverse language pairs (Estonian-Slovak, Czech-Slovak, English-Korean) and experiment with evaluation datasets of various sizes: 200, 500, 1.5K, and 3K source words. Moreover, we compare the results with manual error analysis. In this experiment, we show whether the size of an evaluation dataset impacts the results and how to select the ideal evaluation dataset size. We make our code and datasets publicly available.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info