Informace o publikaci

Chaos in Cartan foliations

Autoři

BAZAIKIN Yaroslav V GALAEV Anton ZHUKOVA Nina I

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj CHAOS
Citace
Doi http://dx.doi.org/10.1063/5.0021596
Popis Chaotic foliations generalize Devaney's concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info