Informace o publikaci

Poisson problems involving fractional Hardy operators and measures

Logo poskytovatele
Autoři

CHEN Huyuan GKIKAS Konstantinos T. NGUYEN Phuoc-Tai

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Nonlinearity
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://iopscience.iop.org/article/10.1088/1361-6544/ad073e
Doi http://dx.doi.org/10.1088/1361-6544/ad073e
Klíčová slova Poisson problem; fractional hardy Laplacian; Radon measure; Kato's inequality
Popis In this paper, we study the Poisson problem involving a fractional Hardy operator and a measure source. The complex interplay between the nonlocal nature of the operator, the peculiar effect of the singular potential and the measure source induces several new fundamental difficulties in comparison with the local case. To overcome these difficulties, we perform a careful analysis of the dual operator in the weighted distributional sense and establish fine properties of the associated function spaces, which in turn allow us to formulate the Poisson problem in an appropriate framework. In light of the close connection between the Poisson problem and its dual problem, we are able to establish various aspects of the theory for the Poisson problem including the solvability, a priori estimates, variants of Kato's inequality and regularity results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info