Informace o publikaci

Semilinear elliptic Schrödinger equations involving singular potentials and source terms

Logo poskytovatele
Autoři

GKIKAS Konstantinos T NGUYEN Phuoc-Tai

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Nonlinear Analysis
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0362546X23001955
Doi http://dx.doi.org/10.1016/j.na.2023.113403
Klíčová slova Hardy potentials; Critical exponents; Source terms; Capacities; Measure data
Popis Let $?\subset \mathbb{R}^N$ ($N>2$) be a $C^2$ bounded domain and $?\subset ?$ be a compact, $C^2$ submanifold without boundary, of dimension $k$ with $0\leq k < N-2$. Put $L_µ= ?+ µd_?^{-2}$ in $?\setminus ?$, where $d_?(x) = \mathrm{dist}(x,?)$ and $µ$ is a parameter. We study the boundary value problem (P) $-L_µu = g(u) + ?$ in $?\setminus ?$ with condition $u=?$ on $\partial ?\cup ?$, where $g: \mathbb{R} \to \mathbb{R}$ is a nondecreasing, continuous function and $?$ and $?$ are positive measures. The interplay between the inverse-square potential $d_?^{-2}$, the nature of the source term $g(u)$ and the measure data $?,?$ yields substantial difficulties in the research of the problem. We perform a deep analysis based on delicate estimate on the Green kernel and Martin kernel and fine topologies induced by appropriate capacities to establish various necessary and sufficient conditions for the existence of a solution in different cases.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info