Informace o publikaci

Geometry of universal embedding spaces for almost complex manifolds

Autoři

CLEMENTE Gabriella Alexandrea

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Archivum Mathematicum
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://dml.cz/handle/10338.dmlcz/152026
Doi http://dx.doi.org/10.5817/AM2024-1-35
Klíčová slova almost-complex manifolds; complex structures; fiber bundles; integrability; Nijenhuis tensor; obstruction theory; transverse embeddings; vector bundles
Popis We investigate the geometry of universal embedding spaces for compact almost-complex manifolds of a given dimension, and related constructions that allow for an extrinsic study of the integrability of almost-complex structures. These embedding spaces were introduced by J-P. Demailly and H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal was to study a conjecture made by F. Bogomolov asserting the “transverse embeddability” of arbitrary compact complex manifolds into foliated algebraic varieties. In this work, we introduce a more general category of universal embedding spaces, and elucidate the geometric structure of related bundles, such as the integrability locus characterizing integrable almost-complex structures. Our approach could potentially lead to finding new obstructions to the existence of a complex structure, which may be useful for tackling Yau’s Challenge.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info