Informace o publikaci

Discrete equational theories

Logo poskytovatele
Autoři

ROSICKÝ Jiří

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematical Structures in Computer Science
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/discrete-equational-theories/B68D91B64C2E6EC95C441A67CD9A24A4
Doi http://dx.doi.org/10.1017/S096012952400001X
Klíčová slova Enriched equational theory; enriched monad; Birkhoff subcategory
Popis On a locally $\lambda$-presentable symmetric monoidal closed category $\mathcal {V}$, $\lambda$-ary enriched equational theories correspond to enriched monads preserving $\lambda$-filtered colimits. We introduce discrete $\lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $\lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info