Informace o publikaci

Phase transitions in a φ4 matrix model on a curved noncommutative space

Autoři

PREKRAT Dragan RANKOVIĆ Dragana TODOROVIĆ-VASOVIĆ Neli Kristina KOVÁČIK Samuel TEKEL Juraj

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Modern Physics A
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www
Doi http://dx.doi.org/10.1142/S0217751X23430029
Klíčová slova matrix models; Noncommutative geometry; phase transitions
Popis In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info