Informace o publikaci

Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks

Autoři

HASHEMI Vahid KŘETÍNSKÝ Jan RIEDER Sabine SCHMIDT Jessica

Rok publikování 2023
Druh Článek ve sborníku
Konference FORMAL METHODS, FM 2023
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-031-27481-7_36
Klíčová slova Runtime monitoring; Neural networks; Out-of-distribution detection; Object detection
Popis Runtime monitoring provides a more realistic and applicable alternative to verification in the setting of real neural networks used in industry. It is particularly useful for detecting out-of-distribution (OOD) inputs, for which the network was not trained and can yield erroneous results. We extend a runtime-monitoring approach previously proposed for classification networks to perception systems capable of identification and localization of multiple objects. Furthermore, we analyze its adequacy experimentally on different kinds of OOD settings, documenting the overall efficacy of our approach.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info