Informace o publikaci

Algebraically explainable controllers: decision trees and support vector machines join forces

Autoři

JUENGERMANN Florian KŘETÍNSKÝ Jan WEININGER Maximilian

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal on Software Tools for Technology Transfer
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1007/s10009-023-00716-z
Doi http://dx.doi.org/10.1007/s10009-023-00716-z
Klíčová slova Controller representation; Explainability; Synthesis; Decision tree
Popis Recently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies, schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems, complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established benchmarks.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info