Informace o publikaci

Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks

Autoři

CHAU Calvin KŘETÍNSKÝ Jan MOHR Stefanie

Rok publikování 2023
Druh Článek ve sborníku
Konference Automated Technology for Verification and Analysis. ATVA 2023
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-031-45329-8_19
Klíčová slova Abstraction; Machine learning; Neural network
Popis Abstraction is a key verification technique to improve scalability. However, its use for neural networks is so far extremely limited. Previous approaches for abstracting classification networks replace several neurons with one of them that is similar enough. We can classify the similarity as defined either syntactically (using quantities on the connections between neurons) or semantically (on the activation values of neurons for various inputs). Unfortunately, the previous approaches only achieve moderate reductions, when implemented at all. In this work, we provide a more flexible framework, where a neuron can be replaced with a linear combination of other neurons, improving the reduction. We apply this approach both on syntactic and semantic abstractions, and implement and evaluate them experimentally. Further, we introduce a refinement method for our abstractions, allowing for finding a better balance between reduction and precision.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info