Informace o publikaci

Invariant Einstein metrics on generalized flag manifolds with two isotropy summands

Autoři

ARVANITOYEORGOS Andreas CHRYSIKOS Ioannis

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of the Australian Mathematical Society
Citace
www https://www.cambridge.org/core/journals/journal-of-the-australian-mathematical-society/article/invariant-einstein-metrics-on-generalized-flag-manifolds-with-two-isotropy-summands/5731CF86712F8CDF4C1B98B30A6031A2
Doi http://dx.doi.org/10.1017/S1446788711001303
Klíčová slova Einstein manifold; homogeneous space; generalized flag manifold; isotropy representation; highest weight; Weyl's formula; bordered Hessian
Popis Let M=G/K be a generalized flag manifold, that is, an adjoint orbit of a compact, connected and semisimple Lie group G. We use a variational approach to find non-Kähler homogeneous Einstein metrics for flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info