Informace o publikaci

Personalized recommendations for learning activities in online environments: a modular rule-based approach

Autoři

PELÁNEK Radek EFFENBERGER Tomáš JARUŠEK Petr

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj User Modeling and User-Adapted Interaction
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s11257-024-09396-z
Klíčová slova Recommender system; Education; Learning environment; Adaptive practice; Domain modeling
Přiložené soubory
Popis Personalization in online learning environments has been extensively studied at various levels, ranging from adaptive hints during task-solving to recommending whole courses. In this study, we focus on recommending learning activities (sequences of homogeneous tasks). We argue that this is an important yet insufficiently explored area, particularly when considering the requirements of large-scale online learning environments used in practice. To address this gap, we propose a modular rule-based framework for recommendations and thoroughly explain the rationale behind the proposal. We also discuss a specific application of the framework.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info