Informace o publikaci

Revealing data leakage in protein interaction benchmarks

Logo poskytovatele
Logo poskytovatele
Autoři

BUSHUIEV Anton BUSHUIEV Roman SEDLAR Jiri PLUSKAL Tomas DAMBORSKÝ Jiří MAZURENKO Stanislav SIVIC Josef

Rok publikování 2024
Druh Článek ve sborníku
Konference ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis In recent years, there has been remarkable progress in machine learning for protein-protein interactions. However, prior work has predominantly focused on improving learning algorithms, with less attention paid to evaluation strategies and data preparation. Here, we demonstrate that further development of machine learning methods may be hindered by the quality of existing train-test splits. Specifically, we find that commonly used splitting strategies for protein complexes, based on protein sequence or metadata similarity, introduce major data leakage. This may result in overoptimistic evaluation of generalization, as well as unfair benchmarking of the models, biased towards assessing their overfitting capacity rather than practical utility. To overcome the data leakage, we recommend constructing data splits based on 3D structural similarity of protein-protein interfaces and suggest corresponding algorithms. We believe that addressing the data leakage problem is critical for further progress in this research area.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info