Informace o publikaci

Fine-Grained Language Relatedness for Zero-Shot Silesian-English Translation

Autoři

SIGNORONI Edoardo

Rok publikování 2023
Druh Článek ve sborníku
Konference RASLAN 2023 Recent Advances in Slavonic Natural Language Processing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://nlp.fi.muni.cz/raslan/raslan23.pdf#page=153
Klíčová slova machine translation;large language models;English;Silesian;evaluation;zero-shot
Přiložené soubory
Popis When parallel corpora are not available to train or fine-tune Machine Translation (MT) systems, one solution is to use data from a related language, and operate in a zero-shot setting. We explore the behaviour and performance of two pre-trained Large Language Models (LLMs) for zero-shot Silesian-English translation, by fine-tuning them on increasingly related languages. Our experiment shows that using data from related languages generally improves the zero-shot translation performance for our language pair, but the optimal fine-grained choice inside the Slavic language family is non-trivial and depends on the model characteristics.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info