Informace o publikaci

ETDD70: Eye-Tracking Dataset for Classification of Dyslexia using AI-based Methods

Logo poskytovatele
Autoři

SEDMIDUBSKÝ Jan DOSTÁLOVÁ Nicol ŠVAŘÍČEK Roman CULEMANN Wolf

Rok publikování 2024
Druh Článek ve sborníku
Konference 17th International Conference on Similarity Search and Applications (SISAP)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Doi http://dx.doi.org/10.1007/978-3-031-75823-2_3
Klíčová slova dyslexia;eye tracking;time-series data;classification;k-nearest neighbor query;multilayer perceptron;residual networks
Popis Dyslexia, a specific learning disorder, poses challenges in reading and language processing. Traditional diagnostic methods often rely on subjective assessments, leading to inaccuracies and delays in intervention. This work proposes classifying dyslexia using AI-based methods applied to eye-tracking data captured during text reading tasks. To facilitate future research in this domain, we collect a novel dataset (ETDD70) comprising eye-tracking recordings of 70 individuals for three reading tasks. In particular, the dataset contains high-frequency and accurate time series of 2D positions of eye movements and many derived characteristics extracted from eye movement patterns. By leveraging similarity-search approaches and deep learning models, we demonstrate the utility of such data in training several classification models, the best of which can distinguish between dyslexic and non-dyslexic individuals with an accuracy of around 90%. Both the dataset and evaluated models provide a valuable resource for researchers to further advance AI-based methods for dyslexia classification.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info