Informace o publikaci

Reproducible MS/MS library cleaning pipeline in matchms

Logo poskytovatele
Autoři

DE JONGE Niek F. HECHT Helge STROBEL Michael WANG Mingxun VAN DER HOOFT Justin J. J. HUBER Florian

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Cheminformatics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00878-1
Doi http://dx.doi.org/10.1186/s13321-024-00878-1
Klíčová slova Library cleaning; Mass spectrometry; Metabolomics; Metadata; Python Package
Přiložené soubory
Popis Mass spectral libraries have proven to be essential for mass spectrum annotation, both for library matching and training new machine learning algorithms. A key step in training machine learning models is the availability of high-quality training data. Public libraries of mass spectrometry data that are open to user submission often suffer from limited metadata curation and harmonization. The resulting variability in data quality makes training of machine learning models challenging. Here we present a library cleaning pipeline designed for cleaning tandem mass spectrometry library data. The pipeline is designed with ease of use, flexibility, and reproducibility as leading principles.Scientific contributionThis pipeline will result in cleaner public mass spectral libraries that will improve library searching and the quality of machine-learning training datasets in mass spectrometry. This pipeline builds on previous work by adding new functionality for curating and correcting annotated libraries, by validating structure annotations. Due to the high quality of our software, the reproducibility, and improved logging, we think our new pipeline has the potential to become the standard in the field for cleaning tandem mass spectrometry libraries.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info