Informace o publikaci

A Perspective on Foundation Models for the Electric Power Grid

Autoři

HAMANN Hendrik F. BRUNSCHWILER Thomas GJORGIEV Blazhe MARTINS Leonardo S. A. PUECH Alban VARBELLA Anna WEISS Jonas BERNABE-MORENO Juan MASSÉ Alexandre Blondin CHOI Seong FOSTER Ian HODGE Bri-Mathias JAIN Rishabh KIM Kibaek MAI Vincent MIRALLES Francois DE MONTIGNY Martin RAMOS-LEANOS Octavio SUPREME Hussein XIE Le YOUSSEF El-Nasser S. ZINFLOU Arnaud BELY Aliaksandr BESSA Ricardo J. BHATTARI Bishnu Prasad SCHMUDE Johannes SOBOLEVSKY Stanislav

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Joule
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Klíčová slova Foundation Models; Data-Driven Power Grid Modeling; Energy Transition; AI-based Power Flow Simulation
Popis Foundation models (FMs) currently dominate news headlines. They employ advanced deep learning architectures to extract structural information autonomously from vast datasets through self-supervision. The resulting rich representations of complex systems and dynamics can be applied to many downstream applications. Therefore, FMs can find uses in electric power grids, challenged by the energy transition and climate change. In this paper, we call for the development of, and state why we believe in, the potential of FMs for electric grids. We highlight their strengths and weaknesses amidst the challenges of a changing grid. We argue that an FM learning from diverse grid data and topologies could unlock transformative capabilities, pioneering a new approach in leveraging AI to redefine how we manage complexity and uncertainty in the electric grid. Finally, we discuss a power grid FM concept, namely GridFM, based on graph neural networks and show how different downstream tasks benefit.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info