Informace o publikaci

Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Autoři

ROLÍNEK Michal SWOBODA Paul ZIETLOW Dominik PAULUS Anselm MUSIL Vít MARTIUS Georg

Rok publikování 2020
Druh Článek ve sborníku
Konference Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Springer
Doi http://dx.doi.org/10.1007/978-3-030-58604-1_25
Klíčová slova Combinatorial optimization; Deep graph matching; Keypoint correspondence
Popis Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info