Informace o publikaci

From Examples to Patterns: LLM-Generated Reg-ular Expressions for Entity Extraction in Czech Clinical Texts

Autoři

ZELINA Petr

Rok publikování 2024
Druh Článek ve sborníku
Konference Proceedings of the Eighteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2024
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://nlp.fi.muni.cz/raslan/2024/paper6.pdf
Klíčová slova NLP; LLM; regex; text mining; clinical notes
Popis Entity extraction in clinical texts is essential for converting unstructured data in clinical notes into structured formats, facilitating large-scale analysis and clinical decision support. Traditional methods often rely on handcrafted regular expressions (regexes), which, while effective, demand significant time and specialized knowledge to create -- resources that healthcare professionals may lack. We introduce a novel approach leveraging large language models (LLMs) to automate regex generation for clinical entity extraction. Our method involves prompting LLMs to generate regex patterns from examples, followed by iterative refinement using a feedback loop. Despite regex limitations, this approach is practical for extracting frequently patterned information common in clinical texts, such as dates, specific data about medical procedures or event detection. Our experiments on Czech clinical notes show this method outperforms current SOTA genetic-programming-based methods for generating regular expression patterns from examples, especially when there are few of them.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info

K vyhodnocování tohoto webu a k personalizaci obsahu a reklam používáme soubory cookies. Když klikněte na „přijmout cookies", poskytnete nám souhlas k jejich uložení, správě a analýze. Upravit možnosti

Jen nezbytné Přijmout cookies