Informace o publikaci

Detection of early relapse in multiple myeloma patients

Logo poskytovatele
Autoři

RŮŽIČKOVÁ Tereza VLACHOVÁ Monika PEČINKA Lukáš BRYCHTOVÁ Monika VEČEŘA Marek RADOVÁ Lenka ŠEVČÍKOVÁ Simona JAROŠOVÁ Marie HAVEL Josef POUR Luděk ŠEVČÍKOVÁ Sabina

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Cell Division
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://celldiv.biomedcentral.com/articles/10.1186/s13008-025-00143-3
Doi http://dx.doi.org/10.1186/s13008-025-00143-3
Klíčová slova Multiple myeloma; Liquid biopsy; Relapse microRNA; MALDI-TOF MS; Small RNA seq; Machine learning
Přiložené soubory
Popis Background Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. Results Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. Conclusion Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info