Informace o publikaci

Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

Autoři

HLINĚNÝ Petr KHAZALIYA Liana

Rok publikování 2024
Druh Článek ve sborníku
Konference 35th International Symposium on Algorithms and Computation (ISAAC 2024)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.4230/LIPIcs.ISAAC.2024.40
Klíčová slova Graph Drawing; Crossing Number; Tree-width; Path-width
Popis Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since the 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple graphs of path-width 13 and tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P? NP) could be successfully tackled using graph decompositions of bounded width, what has been a "tantalizing open problem" [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info

K vyhodnocování tohoto webu a k personalizaci obsahu a reklam používáme soubory cookies. Když klikněte na „přijmout cookies", poskytnete nám souhlas k jejich uložení, správě a analýze. Upravit možnosti

Jen nezbytné Přijmout cookies