Informace o publikaci

Non-Commutative Batalin-Vilkovisky Algebras, Homotopy Lie Algebras and the Courant Bracket

Autoři

BERING LARSEN Klaus

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj Communications in Mathematical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.arxiv.org/abs/hep-th/0603116
Doi http://dx.doi.org/10.1007/s00220-007-0278-3
Obor Teoretická fyzika
Klíčová slova Batalin-Vilkovisky Algebra; Homotopy Lie Algebra; Koszul Bracket; Derived Bracket; Courant Bracket.
Popis We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent \Delta operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the "big bracket" of exterior forms and poly-vectors, and give closed formulas for the higher Courant brackets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info