Informace o publikaci

Reducible Gauge Algebra of BRST-Invariant Constraints

Autoři

BATALIN Igor BERING LARSEN Klaus

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj Nuclear Physics B
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://arxiv.org/abs/hep-th/0612221
Doi http://dx.doi.org/10.1016/j.nuclphysb.2007.02.013
Obor Teoretická fyzika
Klíčová slova BFV-BRST Quantization; Extended BRST Symmetry; Reducible Gauge algebra; Antibracket.
Popis We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anticommuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing Boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info