![Studijní programy](https://cdn.muni.cz/media/3757910/studijni-programy-student-jde-chodbou-masarykova-univerzita.jpg?mode=crop¢er=0.5,0.5&rnd=133754493890000000&heightratio=0.5&width=278)
Zde se nacházíte:
Informace o publikaci
Can physicochemical and microbial soil properties explain enantiomeric shifts of chiral organochlorines?
Název česky | Mohou fyzikálně-chemické vlastnosti půd vysvětlit enantiomerní posuny u chirálních organochlorových látek? |
---|---|
Autoři | |
Rok publikování | 2008 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Environmental Science & Technology |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Kontaminace a dekontaminace půdy včetně pesticidů |
Klíčová slova | ATROPISOMERIC POLYCHLORINATED-BIPHENYLS; MULTIDIMENSIONAL GAS-CHROMATOGRAPHY; HUMAN-MILK SAMPLES; ENANTIOMER FRACTIONS; MASS-SPECTROMETRY; PESTICIDES; RATIOS; BIOMASS; AIR; DEGRADATION |
Popis | Enantiomeric fractions (EF) of PCB 95, 132, 149, and 174, alpha-HCH, o,p'-DDD, and o,p'-DDT were analyzed in 112 soil samples using two-dimensional gas chromatography and triple-quadrupole mass spectrometry. To assess the soil conditions that facilitate enantioselective fractionation of chiral compounds, EF values of selected PCBs were further correlated with a wide range of physicochemical and microbial soil parameters in an attempt to identify the influential factors and their mutual relations. It was evident that soils where nonracemic ratios of investigated compounds were found were more carbon rich but they also contained significantly more humic and fulvic acids and total nitrogen. These specific physicochemical properties were accompanied by significantly increased values of all key biotic variables, the amount of microbial biomass, and its respiration activity (both basal and substrate-induced). Therefore, the shifts from racemic ratios appeared to be associated with more sustainable and active soil microflora. Among other abiotic characteristics, most significant differences were detected in the soil texture. Soil samples with significant shifts contained increased amount of clay component and correspondingly decreased proportion of sand fraction. These differences can also be associated with more intensive microbial activity, because clay content and texture with an increased amount of microaggregates are known to be favorable for soil microflora and its viability. |
Související projekty: |