Informace o publikaci

Putting an Edge to the Poisson Bracket

Autoři

BERING LARSEN Klaus

Rok publikování 2000
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF MATHEMATICAL PHYSICS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://arxiv.org/abs/hep-th/9806249
Doi http://dx.doi.org/10.1063/1.1286144
Obor Teoretická fyzika
Klíčová slova FIELD-THEORY; VARIABLES
Popis We consider a general formalism for treating a Hamiltonian (canonical) field theory with a spatial boundary. In this formalism essentially all functionals are differentiable from the very beginning and hence no improvement terms are needed. We introduce a new Poisson bracket which differs from the usual ``bulk'' Poisson bracket with a boundary term and show that the Jacobi identity is satisfied. The result is geometrized on an abstract world volume manifold. The method is suitable for studying systems with a spatial edge like the ones often considered in Chern-Simons theory and General Relativity. Finally, we discuss how the boundary terms may be related to the time ordering when quantizing.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info