Zde se nacházíte:
Informace o publikaci
The Catlin multitype and biholomorphic equivalence of models
Autoři | |
---|---|
Rok publikování | 2010 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | International Mathematics Research Notices. IMRN |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | pseudoconvex domains; real submanifolds; hypersurfaces; invariants |
Popis | The paper introduces an alternative approach to a fundamental C-R invariant-the Catlin multitype. It is applied to a general smooth hypersurface in C^n+1, not necessarily pseudoconvex. Using this approach, we prove biholomorphic equivalence of models and give an explicit description of biholomorphisms between different models. A constructive finite algorithm for computing the multitype is described. The results can be viewed as providing a necessary step in understanding local biholomorphic equivalence of Levi degenerate hypersurfaces in C^n+1. |