Informace o publikaci

A triplectic bi-Darboux theorem and para-hypercomplex geometry

Logo poskytovatele
Autoři

BATALIN Igor BERING LARSEN Klaus

Rok publikování 2012
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Mathematical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www
Doi http://dx.doi.org/10.1063/1.4759501
Obor Teoretická fyzika
Klíčová slova Poisson Bracket; Antibracket; Sp(2)-Symmetric Quantization; Darboux Theorem; Poincare Lemma.
Popis We provide necessary and sufficient conditions for a bi-Darboux Theorem on triplectic manifolds. Here triplectic manifolds are manifolds equipped with two compatible, jointly non-degenerate Poisson brackets with mutually involutive Casimirs, and with ranks equal to 2/3 of the manifold dimension. By definition bi-Darboux coordinates are common Darboux coordinates for two Poisson brackets. We discuss both the Grassmann-even and the Grassmann-odd Poisson bracket case. Odd triplectic manifolds are, e.g., relevant for Sp(2)-symmetric field-antifield formulation. We demonstrate a one-to-one correspondence between triplectic manifolds and para-hypercomplex manifolds. Existence of bi-Darboux coordinates on the triplectic side of the correspondence translates into a flat Obata connection on the para-hypercomplex side.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info