Informace o publikaci

Similarity Query Postprocessing by Ranking

Logo poskytovatele
Logo poskytovatele
Název česky Přeuspořádání výsledků podobnostních dotazů
Autoři

BUDÍKOVÁ Petra BATKO Michal ZEZULA Pavel

Rok publikování 2012
Druh Článek ve sborníku
Konference Adaptive Multimedia Retrieval. Context, Exploration, and Fusion, LNCS 6817
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-642-27169-4_12
Obor Informatika
Klíčová slova ranking; content-based retrieval; metric space
Popis Current multimedia search technology is, especially in commercial applications, heavily based on text annotations. However, there are many applications such as image hosting web sites (e.g. Flickr or Picasa) where the text metadata are of poor quality in general. Searching such collections only by text gives usually rather unsatisfactory results. On the other hand, multimedia retrieval systems based purely on content can retrieve visually similar results but lag behind with the ability to grasp the semantics expressed by text annotations. In this paper, we propose various ranking techniques that can be transparently applied on any content-based retrieval system in order to improve the search results quality and user satisfaction. We demonstrate the usefulness of the approach on two large real-life datasets indexed by the MUFIN system. The improvement of the ranked results was evaluated by real users using an online survey.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info