Informace o publikaci

Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Logo poskytovatele
Autoři

PASEKA Jan RIEČANOVÁ Zdenka JUNDE Wu

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj Kybernetika : The Journal of the Czech Society for Cybernetics and Informatics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Czech Digital Mathematics Library
Obor Obecná matematika
Klíčová slova non-classical logics; D-posets; effect algebras; MV-algebras; interval and order topology; states
Popis We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of circle plus-operation in the order and interval topologies on them.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info