You are here:
Publication details
Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning
Authors | |
---|---|
Year of publication | 2014 |
Type | Article in Periodical |
Magazine / Source | Nucleic Acids Research |
MU Faculty or unit | |
Citation | |
Web | http://nar.oxfordjournals.org/content/early/2014/05/29/nar.gku338 |
Doi | http://dx.doi.org/10.1093/nar/gku338 |
Field | Physical chemistry and theoretical chemistry |
Keywords | MOLECULAR-DYNAMICS SIMULATIONS; SEQUENCE-DIRECTED CURVATURE; ADENINE-THYMINE TRACT; BASE-PAIR LEVEL; INDIRECT READOUT; NUCLEIC-ACIDS; B-DNA; CONFORMATIONAL-ANALYSIS; DISFAVORING SEQUENCES; ELASTIC PROPERTIES |
Description | A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric A(n)T(n) and asymmetric A(2n) tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts. |
Related projects: |