Publication details

Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples

Authors

JIANG LY AIGRET B DE Borggraeve WM SPÁČIL Zdeněk ILAG LL

Year of publication 2012
Type Article in Periodical
Magazine / Source Analytical and Bioanalytical chemistry
Citation
Doi http://dx.doi.org/10.1007/s00216-012-5966-y
Keywords ALS; Cyanobacteria; beta-amino-N-methylalanine (BAMA); AEG; DAB
Description Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, beta--methylamino--alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and -(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, beta-amino--methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.

You are running an old browser version. We recommend updating your browser to its latest version.

More info