Publication details

Ion channelling effect and damage accumulation in yttria-stabilized zirconia implanted with Ag ions

Authors

MIKŠOVÁ Romana MALINSKÝ Petr HARCUBA Petr VESELÝ Jozef HOLÝ Václav KENTSCH Ulrich MACKOVÁ Anna

Year of publication 2020
Type Article in Periodical
Magazine / Source Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
MU Faculty or unit

Central European Institute of Technology

Citation
Web https://doi.org/10.1016/j.nimb.2020.04.008
Doi http://dx.doi.org/10.1016/j.nimb.2020.04.008
Keywords Ion-irradiation of crystals; Yttria-stabilized zirconia; RBS-channelling; Ag particles
Description Yttria stabilized zirconia (YSZ) is well known as a radiation-resistant material. In this study, we present results from 400 keV Ag+ implantations of the (1 0 0) YSZ single crystals to fluences ranging from 5 x 10(15) to 5 x 10(16) cm(-2). The damage depth profiling and accumulation were probed using Rutherford backscattering spectrometry in the channelling mode (RBS-C), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The axial channelling effect of 2 MeV He+ ions in the implanted YSZ was studied. RBS-C provides us with detailed information about the displaced atoms density depth profiles progressing into greater depths, especially in the case of higher fluence. TEM was utilized to characterize the microstructure evolution and damage accumulation in the buried layer after the implantation. At the highest fluence (5 x 10(16) cm(-2)), Ag depth profile in the depth of 30-130 nm was identified in TEM bright and dark field images as well as in the electron diffraction patterns. Ag depth profiles are in agreement with depth profiles determined by RBS which show maximum Ag concentration in the depth of 94 nm. The reason for the decrease of the deformation identified by XRD in the vertical direction is the defect formation.

You are running an old browser version. We recommend updating your browser to its latest version.

More info