You are here:
Publication details
Ion channelling effect and damage accumulation in yttria-stabilized zirconia implanted with Ag ions
Authors | |
---|---|
Year of publication | 2020 |
Type | Article in Periodical |
Magazine / Source | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms |
MU Faculty or unit | |
Citation | |
Web | https://doi.org/10.1016/j.nimb.2020.04.008 |
Doi | http://dx.doi.org/10.1016/j.nimb.2020.04.008 |
Keywords | Ion-irradiation of crystals; Yttria-stabilized zirconia; RBS-channelling; Ag particles |
Description | Yttria stabilized zirconia (YSZ) is well known as a radiation-resistant material. In this study, we present results from 400 keV Ag+ implantations of the (1 0 0) YSZ single crystals to fluences ranging from 5 x 10(15) to 5 x 10(16) cm(-2). The damage depth profiling and accumulation were probed using Rutherford backscattering spectrometry in the channelling mode (RBS-C), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The axial channelling effect of 2 MeV He+ ions in the implanted YSZ was studied. RBS-C provides us with detailed information about the displaced atoms density depth profiles progressing into greater depths, especially in the case of higher fluence. TEM was utilized to characterize the microstructure evolution and damage accumulation in the buried layer after the implantation. At the highest fluence (5 x 10(16) cm(-2)), Ag depth profile in the depth of 30-130 nm was identified in TEM bright and dark field images as well as in the electron diffraction patterns. Ag depth profiles are in agreement with depth profiles determined by RBS which show maximum Ag concentration in the depth of 94 nm. The reason for the decrease of the deformation identified by XRD in the vertical direction is the defect formation. |