Publication details

Role of Nse1 Subunit of SMC5/6 Complex as a Ubiquitin Ligase

Investor logo
Investor logo
Authors

KOLESÁR Peter STEJSKAL Karel POTĚŠIL David MURRAY Johanne M PALEČEK Jan

Year of publication 2022
Type Article in Periodical
Magazine / Source Cells
MU Faculty or unit

Faculty of Science

Citation
web https://www.mdpi.com/2073-4409/11/1/165
Doi http://dx.doi.org/10.3390/cells11010165
Keywords SMC5; 6; Nse1; ubiquitin ligase; ubiquitination; Ubc13; Mms2; Nse4 kleisin
Description Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info