You are here:
Publication details
ZART: A Novel Multiresolution Reconstruction Algorithm with Motion-blur Correction for Single Particle Analysis
Authors | |
---|---|
Year of publication | 2023 |
Type | Article in Periodical |
Magazine / Source | Journal of Molecular Biology |
MU Faculty or unit | |
Citation | |
Web | URL |
Doi | http://dx.doi.org/10.1016/j.jmb.2023.168088 |
Keywords | Cryo-Electron Microscopy (CryoEM); spherical harmonics; Zernike polynomials; map reconstruction; Zernike3D-based Algebraic Reconstruction Technique (ZART) |
Description | One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional structure of a macromolecule thanks to the acquisition of many particle images representing different poses of the sample. By estimating the orientation of each projected particle, it is possible to recover the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in real space. However, the reconstruction from the projected images works under the assumption that all particles in the dataset correspond to the same conformation of the macromolecule. Although this requisite holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced artefacts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction Technique called ZART, which is able to include continuous flexibility information during the reconstruction process to improve local resolution and reduce motion blurring. The conformational changes are modelled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall aspect of the reconstructed maps by improving their local and global resolution. |
Related projects: |