Publication details

On Two-point Boundary Value Problems for Second Order Singular Functional Differential Equations

Authors

KIGURADZE Ivan PŮŽA Bedřich

Year of publication 2005
Type Article in Periodical
Magazine / Source Functional Differential Equations
MU Faculty or unit

Faculty of Science

Citation
Field General mathematics
Keywords second order singular functional differential equations; two-point boundary value problems; unique solvability; stability
Description For the functional differential equations u(t)= f(u)(t) with the continuous operator f from C1loc(]a,b[)to L1loc(]a,b[)the unimprovable, in a certain sense, sufficient conditions for the solvability and unique solvability of the two-point boundary value problems u(a+)=0=u(b-) and u(a+)=0=u(b-) are established. These condition cover the case when for an arbitrary u the function f(u) is not integrable on [a,b], having singularities at the points a and b.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info