You are here:
Publication details
A complex role for FGF-2 in self renewal, survival, and adhesion of human embryonic stem cells
Authors | |
---|---|
Year of publication | 2009 |
Type | Article in Periodical |
Magazine / Source | Stem Cells |
MU Faculty or unit | |
Citation | |
Field | Genetics and molecular biology |
Keywords | FGF-2; human ESCs; self renewal; cell survival; adhesion |
Description | The transcription program that is responsible for the pluripotency of human ESCs (hESCs) is believed to be comaintained by exogenous fibroblast growth factor-2 (FGF-2), which activates FGF receptors (FGFRs) and stimulates the mitogen-activated protein kinase (MAPK) pathway. This mechanism is further complicated by intracrine FGF signals.Here we show that, in undifferentiated hESCs, exogenous FGF-2 and inhibition of autocrine FGF signaling stimulated the expression of stem cell genes while suppressing cell death and apoptosis genes. Thus, exogenous FGF-2 reinforced the pluripotency maintenance program of intracrine FGF-2 signaling. Consistent with this hypothesis, expression of endogenous FGF-2 decreased during hESC differentiation and FGF-2 knockdown-induced hESC differentiation. In addition, FGF-2 signaling via FGFR2 activated MAPK kinase/extracellular signal-regulated kinase and AKT kinases, protected hESC from stress-induced cell death, and increased hESC adhesion and cloning efficiency. |